Three data partitioning strategies for building local classifiers

I. Zliobaite

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

    Samenvatting

    Divide-and-conquer approach has been recognized in multiple classifier systems aiming to utilize local expertise of individual classifiers. In this study we experimentally investigate three strategies for building local classifiers that are based on different routines of sampling data for training. The first two strategies are based on clustering the training data and building an individual classifier for each cluster or a combination. The third strategy divides the training set based on a selected feature and trains a separate classifier for each subset. Experiments are carried out on simulated and real datasets. We report improvement in the final classification accuracy as a result of combining the three strategies.
    Originele taal-2Engels
    TitelEnsembles in Machine Learning Applications
    RedacteurenO. Okun, G. Valentini, M. Re
    Hoofdstuk14
    Pagina's233-250
    DOI's
    StatusGepubliceerd - 2011

    Publicatie series

    NaamStudies in Computational Intelligence
    Volume373
    ISSN van geprinte versie1860-949X

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Three data partitioning strategies for building local classifiers'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit