Three Combinatorial Perspectives on Minimal Codes

Gianira N. Alfarano, Martino Borello, Alessandro Neri, Alberto Ravagnani

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

17 Citaten (Scopus)
104 Downloads (Pure)

Samenvatting

We develop three approaches of combinatorial flavor to study the structure of minimal codes and cutting blocking sets in finite geometry, each of which has a particular application. The first approach uses techniques from algebraic combinatorics, describing the supports in a linear code via the Alon-F\" uredi theorem and the combinatorial Nullstellensatz. The second approach combines methods from coding theory and statistics to compare the mean and variance of the nonzero weights in a minimal code. Finally, the third approach regards minimal codes as cutting blocking sets and studies these using the theory of spreads in finite geometry. By applying and combining these approaches with each other, we derive several new bounds and constraints on the parameters of minimal codes. Moreover, we obtain two new constructions of cutting blocking sets of small cardinality in finite projective spaces. In turn, these allow us to give explicit constructions of minimal codes having short length for the given field and dimension.

Originele taal-2Engels
Pagina's (van-tot)461-489
Aantal pagina's29
TijdschriftSIAM Journal on Discrete Mathematics
Volume36
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2022

Bibliografische nota

Publisher Copyright:
© 2022 Society for Industrial and Applied Mathematics

Vingerafdruk

Duik in de onderzoeksthema's van 'Three Combinatorial Perspectives on Minimal Codes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit