Thiophene rings improve the device performance of conjugated polymers in polymer solar cells with thick active layers

C. Duan, K. Gao, F.J.M. Colberts, F. Liu, S.C.J. Meskers, M.M. Wienk, R.A.J. Janssen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

36 Citaten (Scopus)
127 Downloads (Pure)


Developing novel materials that tolerate thickness variations of the active layer is critical to further enhance the efficiency of polymer solar cells and enable large-scale manufacturing. Presently, only a few polymers afford high efficiencies at active layer thickness exceeding 200 nm and molecular design guidelines for developing successful materials are lacking. It is thus highly desirable to identify structural factors that determine the performance of semiconducting conjugated polymers in thick-film polymer solar cells. Here, it is demonstrated that thiophene rings, introduced in the backbone of alternating donor–acceptor type conjugated polymers, enhance the fill factor and overall efficiency for thick (>200 nm) solar cells. For a series of fluorinated semiconducting polymers derived from electron-rich benzo[1,2-b:4,5-b′]dithiophene units and electron-deficient 5,6-difluorobenzo[2,1,3]thiazole units a steady increase of the fill factor and power conversion efficiency is found when introducing thiophene rings between the donor and acceptor units. The increased performance is a synergistic result of an enhanced hole mobility and a suppressed bimolecular charge recombination, which is attributed to more favorable polymer chain packing and finer phase separation.

Originele taal-2Engels
Aantal pagina's11
TijdschriftAdvanced Energy Materials
Nummer van het tijdschrift19
StatusGepubliceerd - 11 okt 2017


Duik in de onderzoeksthema's van 'Thiophene rings improve the device performance of conjugated polymers in polymer solar cells with thick active layers'. Samen vormen ze een unieke vingerafdruk.

Citeer dit