Thermal contact resistance in carbon nanotube enhanced heat storage materials

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

149 Downloads (Pure)

Samenvatting

Solid-liquid phase change is one of the most favorable means of compact and economical heat storage in the built environment. In such storage systems, the vast available solar heat is stored as latent heat in the storage materials. Recent studies suggest using sugar alcohols as seasonal heat storage materials for their large storage capacity, moderate melting point, and evident supercooling effects. However, the heat transfer in such materials is sluggish and hence carbon structures are proposed to enhance their overall heat conductivity. In this work, we focus on sugar alcohol - carbon nanotube system, analyze the heat transfer in the radial direction of the nanotube using molecular dynamics simulations. The thermal contact resistance is calculated using Nos´e-Hoover dynamics and is found dependent on the diameter of the tubes. We validate our results using water - nanotube simulations. Then the simulation method is extended to sugar alcohol - nanotube systems.
Originele taal-2Engels
Pagina's1-10
StatusGepubliceerd - 2015
Evenement2nd European Conference on Non-equilibrium Gas Flows - Eindhoven University of Technology, Eindhoven, Nederland
Duur: 9 dec 201511 dec 2015

Congres

Congres2nd European Conference on Non-equilibrium Gas Flows
LandNederland
StadEindhoven
Periode9/12/1511/12/15

Vingerafdruk Duik in de onderzoeksthema's van 'Thermal contact resistance in carbon nanotube enhanced heat storage materials'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Zhang, H., Nedea, S. V., Rindt, C. C. M., & Smeulders, D. M. J. (2015). Thermal contact resistance in carbon nanotube enhanced heat storage materials. 1-10. Paper gepresenteerd op 2nd European Conference on Non-equilibrium Gas Flows, Eindhoven, Nederland.