There are not too many magic configurations

E. Ackerman, K. Buchin, C. Knauer, R. Pinchasi, G. Rote

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review


A finite planar point set P is called a magic configuration if there is an assignment of positive weights to the points of P such that, for everyline l determined by P, the sum of the weights of all points of P on l equals 1. We prove a conjecture of Murty from 1971 and show that a magic configuration consists either of points in general position, or all points are collinear, with the possible exception of one point, or they form a special configuration of 7 points.
Originele taal-2Engels
TitelProceedings of the 23rd Annual ACM Symposium on Computational Geometry (SoCG 2007) 6-8 June 2007, Geongju, South Korea
Plaats van productieNew York
UitgeverijAssociation for Computing Machinery, Inc
ISBN van geprinte versie978-1-59593-705-6
StatusGepubliceerd - 2007
Evenement23rd International Symposium on Computational Geometry (SoCG 2007) - Gyeongju, Zuid-Korea
Duur: 6 jun 20078 jun 2007
Congresnummer: 23


Congres23rd International Symposium on Computational Geometry (SoCG 2007)
Verkorte titelSoCG 2007
AnderSoCG 2007, Gyeongju, South Korea

Vingerafdruk Duik in de onderzoeksthema's van 'There are not too many magic configurations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit