There are not too many magic configurations

E. Ackerman, K. Buchin, C. Knauer, R. Pinchasi, G. Rote

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

A finite planar point set P is called a magic configuration if there is an assignment of positive weights to the points of P such that, for everyline l determined by P, the sum of the weights of all points of P on l equals 1. We prove a conjecture of Murty from 1971 and show that a magic configuration consists either of points in general position, or all points are collinear, with the possible exception of one point, or they form a special configuration of 7 points.
Originele taal-2Engels
TitelProceedings of the 23rd Annual ACM Symposium on Computational Geometry (SoCG 2007) 6-8 June 2007, Geongju, South Korea
Plaats van productieNew York
UitgeverijAssociation for Computing Machinery, Inc
Pagina's142-149
ISBN van geprinte versie978-1-59593-705-6
DOI's
StatusGepubliceerd - 2007
Evenement23rd International Symposium on Computational Geometry (SoCG 2007) - Gyeongju, Zuid-Korea
Duur: 6 jun 20078 jun 2007
Congresnummer: 23

Congres

Congres23rd International Symposium on Computational Geometry (SoCG 2007)
Verkorte titelSoCG 2007
LandZuid-Korea
StadGyeongju
Periode6/06/078/06/07
AnderSoCG 2007, Gyeongju, South Korea

Vingerafdruk Duik in de onderzoeksthema's van 'There are not too many magic configurations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit