The VPN problem with concave costs

Samuel Fiorini, Gianpaolo Oriolo, Laura Sanità, Dirk Oliver Theis

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

8 Citaten (Scopus)

Samenvatting

Only recently Goyal, Olver, and Shepherd [Pr oc. STOC, ACM, New York, 2008] proved that the symmetric virtual private network design (sVPN) problem has the tree routing property, namely, that there always exists an optimal solution to the problem whose support is a tree. Combining this with previous results by Fingerhut, Suri, and Turner [J. Algorithms, 24 (1997), pp. 287-309] and Gupta et al. [Proc. STOC, ACM, New York, 2001], sVPN can be solved in polynomial time. In this paper we investigate an APX-hard generalization of sVPN, where the contribution of each edge to the total cost is proportional to some non-negative, concave, and nondecreasing function of the capacity reservation. We show that the tree routing property extends to the new problem and give a constant-factor approximation algorithm for it. We also show that the undirected uncapacitated single-source minimum concave-cost flow problem has the tree routing property when the cost function has some property of symmetry.

Originele taal-2Engels
Pagina's (van-tot)1080-1090
Aantal pagina's11
TijdschriftSIAM Journal on Discrete Mathematics
Volume24
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 2010
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'The VPN problem with concave costs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit