The Typical Non-Linear Code over Large Alphabets

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

We consider the problem of describing the typical (possibly) non-linear code of minimum distance bounded from below over a large alphabet. We concentrate on block codes with the Hamming metric and on subspace codes with the injection metric. In sharp contrast with the behavior of linear block codes, we show that the typical non-linear code in the Hamming metric of cardinality q^n-d+1 is far from having minimum distance d, i.e., from being MDS. We also give more precise results about the asymptotic proportion of block codes with good distance properties within the set of codes having a certain cardinality. We then establish the analogous results for subspace codes with the injection metric, showing also an application to the theory of partial spreads in finite geometry.

Originele taal-2Engels
Titel2021 IEEE Information Theory Workshop, ITW 2021 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
ISBN van elektronische versie9781665403122
DOI's
StatusGepubliceerd - 2021
Evenement2021 IEEE Information Theory Workshop, ITW 2021 - Virtual, Online, Japan
Duur: 17 okt. 202121 okt. 2021

Congres

Congres2021 IEEE Information Theory Workshop, ITW 2021
Land/RegioJapan
StadVirtual, Online
Periode17/10/2121/10/21

Bibliografische nota

Publisher Copyright:
© 2021 IEEE.

Vingerafdruk

Duik in de onderzoeksthema's van 'The Typical Non-Linear Code over Large Alphabets'. Samen vormen ze een unieke vingerafdruk.

Citeer dit