The Switching Hierarchical Gaussian Filter

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In this paper we discuss variational message passing-based (VMP) inference in a switching Hierarchical Gaussian Filter (HGF). An HGF is a flexible hierarchical state space model that supports closed-form VMP-based approximate inference for tracking of both states and slowly time-varying parameters. Since natural signals often submit to regime-switching dynamics, there is a need for low-complexity closed-form inference in switching state space models. Here we extend the HGF model with parameter switching mechanics and derive closed-form VMP update rules for plug-in applications in factor graph-based models. These VMP rules support both tracking of latent variables and variational free energy as a model performance measure. We show that the switching HGF performs better than a non-switching HGF on modelling of a stock market data set.
Originele taal-2Engels
Titel2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1373-1378
Aantal pagina's6
ISBN van elektronische versie978-1-5386-8209-8
DOI's
StatusGepubliceerd - 1 sep. 2021
Evenement2021 IEEE International Symposium on Information Theory (ISIT) - Virtual, Melbourne, Australië
Duur: 12 jul. 202120 jul. 2021

Congres

Congres2021 IEEE International Symposium on Information Theory (ISIT)
Land/RegioAustralië
StadMelbourne
Periode12/07/2120/07/21

Vingerafdruk

Duik in de onderzoeksthema's van 'The Switching Hierarchical Gaussian Filter'. Samen vormen ze een unieke vingerafdruk.

Citeer dit