Samenvatting
In this paper we discuss variational message passing-based (VMP) inference in a switching Hierarchical Gaussian Filter (HGF). An HGF is a flexible hierarchical state space model that supports closed-form VMP-based approximate inference for tracking of both states and slowly time-varying parameters. Since natural signals often submit to regime-switching dynamics, there is a need for low-complexity closed-form inference in switching state space models. Here we extend the HGF model with parameter switching mechanics and derive closed-form VMP update rules for plug-in applications in factor graph-based models. These VMP rules support both tracking of latent variables and variational free energy as a model performance measure. We show that the switching HGF performs better than a non-switching HGF on modelling of a stock market data set.
Originele taal-2 | Engels |
---|---|
Titel | 2021 IEEE International Symposium on Information Theory, ISIT 2021 - Proceedings |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 1373-1378 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-5386-8209-8 |
DOI's | |
Status | Gepubliceerd - 1 sep. 2021 |
Evenement | 2021 IEEE International Symposium on Information Theory (ISIT) - Virtual, Melbourne, Australië Duur: 12 jul. 2021 → 20 jul. 2021 |
Congres
Congres | 2021 IEEE International Symposium on Information Theory (ISIT) |
---|---|
Land/Regio | Australië |
Stad | Melbourne |
Periode | 12/07/21 → 20/07/21 |