The survival probability for critical spread-out oriented percolation above 4+1 dimensions, I. Induction

R.W. Hofstad, van der, W.Th.F. Hollander, den, G. Slade

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

10 Citaten (Scopus)
9 Downloads (Pure)

Samenvatting

We consider critical spread-out oriented percolation above 4 + 1 dimensions. Our main result is that the extinction probability at time n (i.e., the probability for the origin to be connected to the hyperplane at time n but not to the hyperplane at time n + 1) decays like 1/Bn 2 as , where B is a finite positive constant. This in turn implies that the survival probability at time n (i.e., the probability that the origin is connected to the hyperplane at time n) decays like 1/Bn as . The latter has been shown in an earlier paper to have consequences for the geometry of large critical clusters and for the incipient infinite cluster. The present paper is Part I in a series of two papers. In Part II, we derive a lace expansion for the survival probability, adapted so as to deal with point-to-plane connections. This lace expansion leads to a nonlinear recursion relation for the survival probability. In Part I, we use this recursion relation to deduce the asymptotics via induction.
Originele taal-2Engels
Pagina's (van-tot)363-389
TijdschriftProbability Theory and Related Fields
Volume138
Nummer van het tijdschrift3-4
DOI's
StatusGepubliceerd - 2007

Vingerafdruk Duik in de onderzoeksthema's van 'The survival probability for critical spread-out oriented percolation above 4+1 dimensions, I. Induction'. Samen vormen ze een unieke vingerafdruk.

Citeer dit