The statistical strength of nonlocality proofs

W. Dam, van, R.D. Gill, P.D. Grünwald

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

43 Citaten (Scopus)

Samenvatting

There exist numerous proofs of Bell's theorem, stating that quantum mechanics is incompatible with local realistic theories of nature. Here the strength of such nonlocality proofs is defined in terms of the amount of evidence against local realism provided by the corresponding experiments. Statistical considerations show that the amount of evidence should be measured by the Kullback-Leibler (KL) or relative entropy divergence. The statistical strength of the following proofs is determined: Bell's original proof and Peres' optimized variant of it, and proofs by Clauser, Horne, Shimony, and Holt (CHSH), Hardy, Mermin, and Greenberger, Horne, and Zeilinger (GHZ). The GHZ proof is at least four and a half times stronger than all other proofs, while of the two-party proofs, the one of CHSH is the strongest.
Originele taal-2Engels
Pagina's (van-tot)2812-2835
TijdschriftIEEE Transactions on Information Theory
Volume51
Nummer van het tijdschrift8
DOI's
StatusGepubliceerd - 2005

Vingerafdruk

Duik in de onderzoeksthema's van 'The statistical strength of nonlocality proofs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit