The second largest component in the supercritical 2D Hamming graph

R.W. Hofstad, van der, M.J. Luczak, J. Spencer

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)

Samenvatting

The two-dimensional Hamming graph H(2,n) consists of the n2 vertices (i,j), 1 i,j n, two vertices being adjacent when they share a common coordinate. We examine random subgraphs of H(2,n) in percolation with edge probability p, in such a way that the average degree satisfies 2(n - 1)p = 1 + . Previous work [8] has shown that in the barely supercritical region n-2/3 ln1/3n 1, the largest component satisfies a law of large numbers with mean 2n. Here we show that the second largest component has, with high probability, size bounded by 28-2 log(n23), so that the dominant component has emerged. This result also suggests that a discrete duality principle holds, where, after removing the largest connected component in the supercritical regime, the remaining random subgraphs behave as in the subcritical regime.
Originele taal-2Engels
Pagina's (van-tot)80-89
TijdschriftRandom Structures and Algorithms
Volume36
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 2010

Vingerafdruk Duik in de onderzoeksthema's van 'The second largest component in the supercritical 2D Hamming graph'. Samen vormen ze een unieke vingerafdruk.

Citeer dit