The scaling limits of the non critical strip wetting model

J. Sohier

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)

Samenvatting

The strip wetting model is defined by giving a (continuous space) one dimensional random walk S a reward ß each time it hits the strip R+×[0,a] (where a is a positive parameter), which plays the role of a defect line. We show that this model exhibits a phase transition between a delocalized regime (ßßca), where the critical point ßca>0 depends on S and on a. In this paper we give a precise pathwise description of the transition, extracting the full scaling limits of the model. Our approach is based on Markov renewal theory. Keywords: Fluctuation theory for random walks; Markov renewal theory; Scaling limits for physical systems
Originele taal-2Engels
Pagina's (van-tot)3075-3103
Aantal pagina's29
TijdschriftStochastic Processes and their Applications
Volume125
Nummer van het tijdschrift8
DOI's
StatusGepubliceerd - 2015

Vingerafdruk Duik in de onderzoeksthema's van 'The scaling limits of the non critical strip wetting model'. Samen vormen ze een unieke vingerafdruk.

Citeer dit