The relationship of DBSCAN to matrix factorization and spectral clustering

Erich Schubert, Sibylle Hess, Katharina Morik

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

13 Citaten (Scopus)
262 Downloads (Pure)

Samenvatting

DBSCAN is a popular approach for density-based clustering.
In this short ``work in progress'' paper, we want to present an interpretation of
DBSCAN as a matrix factorization problem, which introduces
a theoretical connection (but not an equivalence)
between DBSCAN and Spectral Clustering (SC).

While this does not yield a faster algorithm for DBSCAN,
establishing this relationship is a step towards a more unified
view of clustering, by identifying further relationships between
some of the most popular clustering algorithms.
Originele taal-2Engels
TitelLWDA 2018 - Lernen, Wissen, Daten, Analysen 2018
SubtitelProceedings of the conference "Lernen, Wissen, Daten Analysen
Plaats van productieAachen
UitgeverijRWTH Aachen
Pagina's330-334
Aantal pagina's5
StatusGepubliceerd - 2018
Extern gepubliceerdJa
EvenementLWDA 2018 - Lernen, Wissen, Daten, Analysen 2018 - Mannheim, Duitsland
Duur: 22 aug. 201824 aug. 2018
https://bibliographie.ub.rub.de/retrieve/Conference/7fee8151-004e-44e5-90fd-7e9023e167e7/

Publicatie series

NaamCEUR workshop proceedings
Volume2191

Congres

CongresLWDA 2018 - Lernen, Wissen, Daten, Analysen 2018
Verkorte titelLWDA2019
Land/RegioDuitsland
StadMannheim
Periode22/08/1824/08/18
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'The relationship of DBSCAN to matrix factorization and spectral clustering'. Samen vormen ze een unieke vingerafdruk.

Citeer dit