The rank of sparse symmetric matrices over arbitrary fields

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

21 Downloads (Pure)

Samenvatting

Let (Formula presented.) be an arbitrary field and (Formula presented.) be a sequence of sparse weighted Erdős–Rényi random graphs on (Formula presented.) vertices with edge probability (Formula presented.), where weights from (Formula presented.) are assigned to the edges according to a matrix (Formula presented.). We show that the normalized rank of the adjacency matrix of (Formula presented.) converges to a constant, and derive the limiting expression. Our result shows that for the general class of sparse symmetric matrices under consideration, the asymptotics of the normalized rank are independent of the edge weights and even the field, in the sense that the limiting constant for the general case coincides with the one previously established for adjacency matrices of sparse nonweighted Erdős–Rényi matrices over (Formula presented.). Our proof, which is purely combinatorial in its nature, is based on an intricate extension of a novel perturbation approach to the symmetric setting.

Originele taal-2Engels
Artikelnummere21258
Aantal pagina's66
TijdschriftRandom Structures and Algorithms
Volume66
Nummer van het tijdschrift1
Vroegere onlinedatum3 okt. 2024
DOI's
StatusGepubliceerd - jan. 2025

Bibliografische nota

Publisher Copyright:
© 2024 The Author(s). Random Structures & Algorithms published by Wiley Periodicals LLC.

Financiering

The authors are supported by Netherlands Organisation for Scientific Research (NWO) through the Gravitation NETWORKS grant 024.002.003. The work of Haodong Zhu is further supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie grant agreement no. 945045. The authors are supported by Netherlands Organisation for Scientific Research (NWO) through the Gravitation NETWORKS grant 024.002.003. The work of Haodong Zhu is further supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska\u2010Curie grant agreement no. 945045.

FinanciersFinanciernummer
H2020 Marie Skłodowska-Curie Actions
European Union’s Horizon Europe research and innovation programme
European Union’s Horizon Europe research and innovation programme945045
Nederlandse Organisatie voor Wetenschappelijk Onderzoek024.002.003

    Vingerafdruk

    Duik in de onderzoeksthema's van 'The rank of sparse symmetric matrices over arbitrary fields'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit