TY - JOUR
T1 - The nonexistence of distance-regular graphs with intersection arrays {27, 20, 10; 1, 2, 18} and {36, 28, 4; 1, 2, 24}
AU - Brouwer, A.E.
AU - Sumalroj, S.
AU - Worawannotai, C.
PY - 2016
Y1 - 2016
N2 - Locally, a distance-regular graph with ‘μ = 2’ carries the structure of a partial linear space. Using this, we show that there are no distanceregular graphs with intersection array {27, 20, 10; 1, 2, 18} or {36, 28, 4; 1, 2, 24} (on, respectively, 448 or 625 vertices).
AB - Locally, a distance-regular graph with ‘μ = 2’ carries the structure of a partial linear space. Using this, we show that there are no distanceregular graphs with intersection array {27, 20, 10; 1, 2, 18} or {36, 28, 4; 1, 2, 24} (on, respectively, 448 or 625 vertices).
UR - http://www.scopus.com/inward/record.url?scp=84989237367&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:84989237367
VL - 66
SP - 330
EP - 332
JO - The Australasian Journal of Combinatorics
JF - The Australasian Journal of Combinatorics
SN - 1034-4942
IS - 2
ER -