The M-matrix group inverse problem for distance-biregular graphs

Aida Abiad, Ángeles Carmona, Andrés M. Encinas, María José Jiménez (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
50 Downloads (Pure)

Samenvatting

In this work, we obtain the group inverse of the combinatorial Laplacian matrix of distance-biregular graphs. This expression can be obtained trough the so-called equilibrium measures for sets obtained by deleting a vertex. Moreover, we show that the two equilibrium arrays characterizing distance-biregular graphs can be expressed in terms of the mentioned equilibrium measures. As a consequence of the minimum principle, we provide a characterization of when the group inverse of the combinatorial Laplacian matrix of a distance-biregular graph is an M-matrix.

Originele taal-2Engels
Artikelnummer158
Aantal pagina's16
TijdschriftComputational and Applied Mathematics
Volume42
Nummer van het tijdschrift4
DOI's
StatusGepubliceerd - jun. 2023

Bibliografische nota

Funding Information:
The research of Á. Carmona, A.M. Encinas and M.J. Jiménez has been partly supported by the Spanish Research Council (Ministerio de Ciencia e Innovación) under project PID2021-122501NB-I00 and by the Universitat Politècnica de Catalunya under funds AGRUP-UPC. The research of A. Abiad is partially supported by the FWO grant 1285921N.

Financiering

The research of Á. Carmona, A.M. Encinas and M.J. Jiménez has been partly supported by the Spanish Research Council (Ministerio de Ciencia e Innovación) under project PID2021-122501NB-I00 and by the Universitat Politècnica de Catalunya under funds AGRUP-UPC. The research of A. Abiad is partially supported by the FWO grant 1285921N.

Vingerafdruk

Duik in de onderzoeksthema's van 'The M-matrix group inverse problem for distance-biregular graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit