The least squares method in heteroscedastic censored regression models

I. Van Keilegom, M.G. Akritas

    Onderzoeksoutput: Boek/rapportRapportAcademic

    121 Downloads (Pure)

    Samenvatting

    Consider the heteroscedastic polynomial regression model $ Y = \beta_0 + \beta_1X + ... + \beta_pX^p + \sqrt{Var(Y|X)}\epsilon $, where \epsilon is independent of X, and Y is subject to random censoring. Provided that the censoring on Y is 'light' in some region of X, we construct a least squares estimator for the regression parameters whose asymptotic bias is shown to be as small as desired. The least squares estimator is defined as a functional of the Van Keilegom and Akritas (1999) estimator of the bivariate distribution $P(X \leq x, Y \leq y)$, and its asymptotic normality is obtained.
    Originele taal-2Engels
    Plaats van productieEindhoven
    UitgeverijTechnische Universiteit Eindhoven
    Aantal pagina's14
    StatusGepubliceerd - 1999

    Publicatie series

    NaamMemorandum COSOR
    Volume9918
    ISSN van geprinte versie0926-4493

    Vingerafdruk

    Duik in de onderzoeksthema's van 'The least squares method in heteroscedastic censored regression models'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit