The hierarchical flow of eye movements

Michael Burch, Ayush Kumar, Klaus Mueller

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Eye movements are composed of spatial and temporal aspects. Moreover, not only the eye movements of one subject are of interest, but a data analyst is more or less interested in the scanning strategies of a group of people in a condensed form. This data aggregation can provide useful insights into the visual attention over space and time leading to the detection of possible visual problems or design flaws in the presented stimulus. In this paper we present a way to visually explore the flow of eye movements, i.e., we try to bring a layered hierarchical structure into the spatio-temporal eye movements. To reach this goal, the stimulus is spatially divided into areas of interest (AOIs) and temporally or sequentially aggregated into time periods or subsequences. The weighted AOI transitions are used to model directed graph edges while the AOIs build the graph vertices. The flow of eye movements is naturally obtained by computing hierarchical layers for the AOIs while the downward edges indicate the hierarchical flow between the AOIs on the corresponding layers.

Originele taal-2Engels
TitelProceedings - ETVIS 2018
SubtitelEye Tracking and Visualization
RedacteurenStephen N. Spencer
Plaats van productieNew York
UitgeverijAssociation for Computing Machinery, Inc
Aantal pagina's5
ISBN van elektronische versie978-1-4503-5787-6
DOI's
StatusGepubliceerd - 15 jun 2018
Evenement3rd Workshop on Eye Tracking and Visualization, ETVIS 2018 - Warsaw, Polen
Duur: 15 jun 2018 → …

Congres

Congres3rd Workshop on Eye Tracking and Visualization, ETVIS 2018
LandPolen
StadWarsaw
Periode15/06/18 → …

    Vingerafdruk

Citeer dit

Burch, M., Kumar, A., & Mueller, K. (2018). The hierarchical flow of eye movements. In S. N. Spencer (editor), Proceedings - ETVIS 2018: Eye Tracking and Visualization [3] New York: Association for Computing Machinery, Inc. https://doi.org/10.1145/3205929.3205930