The geometry and dynamics of binary trees

T. David, T. Kempen, van, Huaxiong Huang, P. Wilson

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Citaten (Scopus)
1 Downloads (Pure)


The modeling of a fully populated 3D tree able to regulate dynamically remains a relatively unexplored field. A non-dimensional representation of "autoregulation" coupled with an asymmetric binary tree algorithm has been developed. The tree has a defined topology as well as a spatial representation in 3D. An analysis using a simple linearization shows the systems dynamics when perturbed away from equilibrium. Results, based on previously published work by Karch and Schreiner are presented for a variety of parameters which provide different shapes of the tree and indicate a possible mechanism for "growing" the tree in specified directions. In addition the tree, through the use of local tagging has the ability to vary its size locally via a coupled set of conservation and reverting differential equations.
Originele taal-2Engels
Pagina's (van-tot)1464-1481
Aantal pagina's18
TijdschriftMathematics and Computers in Simulation
Nummer van het tijdschrift7
StatusGepubliceerd - 2011


Duik in de onderzoeksthema's van 'The geometry and dynamics of binary trees'. Samen vormen ze een unieke vingerafdruk.

Citeer dit