The diameter of the fractional matching polytope and its hardness implications

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

7 Citaten (Scopus)

Samenvatting

The (combinatorial) diameter of a polytope P ⊆ R d is the maximum value of a shortest path between a pair of vertices on the 1-skeleton of P, that is the graph where the nodes are given by the 0-dimensional faces of P, and the edges are given the 1-dimensional faces of P. The diameter of a polytope has been studied from many different perspectives, including a computational complexity point of view. In particular, [Frieze and Teng, 1994] showed that computing the diameter of a polytope is (weakly) NP-hard. In this paper, we show that the problem of computing the diameter is strongly NP-hard even for a polytope with a very simple structure: namely, the fractional matching polytope. We also show that computing a pair of vertices at maximum shortest path distance on the 1-skeleton of this polytope is an APX-hard problem. We prove these results by giving an exact characterization of the diameter of the fractional matching polytope, that is of independent interest.

Originele taal-2Engels
TitelProceedings - 59th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2018
RedacteurenMikkel Thorup
UitgeverijIEEE Computer Society
Pagina's910-921
Aantal pagina's12
ISBN van elektronische versie9781538642306
DOI's
StatusGepubliceerd - 30 nov. 2018
Extern gepubliceerdJa
Evenement59th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2018 - Paris, Frankrijk
Duur: 7 okt. 20189 okt. 2018

Congres

Congres59th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2018
Land/RegioFrankrijk
StadParis
Periode7/10/189/10/18

Vingerafdruk

Duik in de onderzoeksthema's van 'The diameter of the fractional matching polytope and its hardness implications'. Samen vormen ze een unieke vingerafdruk.

Citeer dit