The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Downloads (Pure)

Uittreksel

To maintain functionality during in situ vascular regeneration, the rate of implant degradation should be closely balanced by neo-tissue formation. It is unknown, however, how the implant's functionality is affected by the degradation of the polymers it is composed of. We therefore examined the macro- and microscopic features as well as the mechanical performance of vascular scaffolds upon in vitro enzymatic degradation. Three candidate biomaterials with supramolecularly interacting bis-urea (BU) hard blocks ('slow-degrading' polycarbonate-BU (PC-BU), 'intermediate-degrading' polycarbonate-ester-BU (PC(e)-BU), and 'fast-degrading' polycaprolactone-ester-BU (PCL-BU)) were synthesized and electrospun into microporous scaffolds. These materials possess a sequence-controlled macromolecular structure, so their susceptibility to degradation is tunable by controlling the nature of the polymer backbone. The scaffolds were incubated in lipase and monitored for changes in physical, chemical, and mechanical properties. Remarkably, comparing PC-BU to PC(e)-BU, we observed that small changes in macromolecular structure led to significant differences in degradation kinetics. All three scaffold types degraded via surface erosion, which was accompanied by fiber swelling for PC-BU scaffolds, and some bulk degradation and a collapsing network for PCL-BU scaffolds. For the PC-BU and PC(e)-BU scaffolds this resulted in retention of mechanical properties, whereas for the PCL-BU scaffolds this resulted in stiffening. Our in vitro study demonstrates that vascular scaffolds, electrospun from sequence-controlled supramolecular materials with varying ester contents, not only display different susceptibilities to degradation, but also degrade via different mechanisms. STATEMENT OF SIGNIFICANCE: One of the key elements to successfully engineer vascular tissues in situ, is to balance the rate of implant degradation and neo-tissue formation. Due to their tunable properties, supramolecular polymers can be customized into attractive biomaterials for vascular tissue engineering. Here, we have exploited this tunability and prepared a set of polymers with different susceptibility to degradation. The polymers, which were electrospun into microporous scaffolds, displayed not only different susceptibilities to degradation, but also obeyed different degradation mechanisms. This study illustrates how the class of supramolecular polymers continues to represent a promising group of materials for tissue engineering approaches.

Originele taal-2Engels
Pagina's (van-tot)48-59
Aantal pagina's12
TijdschriftActa Biomaterialia
Volume92
Vroegere onlinedatum17 mei 2019
DOI's
StatusGepubliceerd - 1 jul 2019

Vingerafdruk

polycarbonate
Scaffolds
Blood Vessels
Esters
Polymers
Polycarbonates
Degradation
Urea
Polycaprolactone
Biocompatible Materials
Tissue Engineering
Tissue
Tissue engineering
Biomaterials
In Vitro Techniques
Lipase
Regeneration

Citeer dit

@article{261683205793422e8225ad149e4df924,
title = "The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure",
abstract = "To maintain functionality during in situ vascular regeneration, the rate of implant degradation should be closely balanced by neo-tissue formation. It is unknown, however, how the implant's functionality is affected by the degradation of the polymers it is composed of. We therefore examined the macro- and microscopic features as well as the mechanical performance of vascular scaffolds upon in vitro enzymatic degradation. Three candidate biomaterials with supramolecularly interacting bis-urea (BU) hard blocks ('slow-degrading' polycarbonate-BU (PC-BU), 'intermediate-degrading' polycarbonate-ester-BU (PC(e)-BU), and 'fast-degrading' polycaprolactone-ester-BU (PCL-BU)) were synthesized and electrospun into microporous scaffolds. These materials possess a sequence-controlled macromolecular structure, so their susceptibility to degradation is tunable by controlling the nature of the polymer backbone. The scaffolds were incubated in lipase and monitored for changes in physical, chemical, and mechanical properties. Remarkably, comparing PC-BU to PC(e)-BU, we observed that small changes in macromolecular structure led to significant differences in degradation kinetics. All three scaffold types degraded via surface erosion, which was accompanied by fiber swelling for PC-BU scaffolds, and some bulk degradation and a collapsing network for PCL-BU scaffolds. For the PC-BU and PC(e)-BU scaffolds this resulted in retention of mechanical properties, whereas for the PCL-BU scaffolds this resulted in stiffening. Our in vitro study demonstrates that vascular scaffolds, electrospun from sequence-controlled supramolecular materials with varying ester contents, not only display different susceptibilities to degradation, but also degrade via different mechanisms. STATEMENT OF SIGNIFICANCE: One of the key elements to successfully engineer vascular tissues in situ, is to balance the rate of implant degradation and neo-tissue formation. Due to their tunable properties, supramolecular polymers can be customized into attractive biomaterials for vascular tissue engineering. Here, we have exploited this tunability and prepared a set of polymers with different susceptibility to degradation. The polymers, which were electrospun into microporous scaffolds, displayed not only different susceptibilities to degradation, but also obeyed different degradation mechanisms. This study illustrates how the class of supramolecular polymers continues to represent a promising group of materials for tissue engineering approaches.",
keywords = "Bulk and surface erosion, Electrospinning, Lipase, Tissue engineering, Vascular graft",
author = "{van Haaften}, E.E. and R. Duijvelshoff and B.D. Ippel and S.H.M. S{\"o}ntjens and {van Houtem}, M.H.C.J. and H.M. Janssen and A.I.P.M. Smits and N.A. Kurniawan and P.Y.W. Dankers and C.V.C. Bouten",
year = "2019",
month = "7",
day = "1",
doi = "10.1016/j.actbio.2019.05.037",
language = "English",
volume = "92",
pages = "48--59",
journal = "Acta Biomaterialia",
issn = "1742-7061",
publisher = "Elsevier",

}

TY - JOUR

T1 - The degradation and performance of electrospun supramolecular vascular scaffolds examined upon in vitro enzymatic exposure

AU - van Haaften, E.E.

AU - Duijvelshoff, R.

AU - Ippel, B.D.

AU - Söntjens, S.H.M.

AU - van Houtem, M.H.C.J.

AU - Janssen, H.M.

AU - Smits, A.I.P.M.

AU - Kurniawan, N.A.

AU - Dankers, P.Y.W.

AU - Bouten, C.V.C.

PY - 2019/7/1

Y1 - 2019/7/1

N2 - To maintain functionality during in situ vascular regeneration, the rate of implant degradation should be closely balanced by neo-tissue formation. It is unknown, however, how the implant's functionality is affected by the degradation of the polymers it is composed of. We therefore examined the macro- and microscopic features as well as the mechanical performance of vascular scaffolds upon in vitro enzymatic degradation. Three candidate biomaterials with supramolecularly interacting bis-urea (BU) hard blocks ('slow-degrading' polycarbonate-BU (PC-BU), 'intermediate-degrading' polycarbonate-ester-BU (PC(e)-BU), and 'fast-degrading' polycaprolactone-ester-BU (PCL-BU)) were synthesized and electrospun into microporous scaffolds. These materials possess a sequence-controlled macromolecular structure, so their susceptibility to degradation is tunable by controlling the nature of the polymer backbone. The scaffolds were incubated in lipase and monitored for changes in physical, chemical, and mechanical properties. Remarkably, comparing PC-BU to PC(e)-BU, we observed that small changes in macromolecular structure led to significant differences in degradation kinetics. All three scaffold types degraded via surface erosion, which was accompanied by fiber swelling for PC-BU scaffolds, and some bulk degradation and a collapsing network for PCL-BU scaffolds. For the PC-BU and PC(e)-BU scaffolds this resulted in retention of mechanical properties, whereas for the PCL-BU scaffolds this resulted in stiffening. Our in vitro study demonstrates that vascular scaffolds, electrospun from sequence-controlled supramolecular materials with varying ester contents, not only display different susceptibilities to degradation, but also degrade via different mechanisms. STATEMENT OF SIGNIFICANCE: One of the key elements to successfully engineer vascular tissues in situ, is to balance the rate of implant degradation and neo-tissue formation. Due to their tunable properties, supramolecular polymers can be customized into attractive biomaterials for vascular tissue engineering. Here, we have exploited this tunability and prepared a set of polymers with different susceptibility to degradation. The polymers, which were electrospun into microporous scaffolds, displayed not only different susceptibilities to degradation, but also obeyed different degradation mechanisms. This study illustrates how the class of supramolecular polymers continues to represent a promising group of materials for tissue engineering approaches.

AB - To maintain functionality during in situ vascular regeneration, the rate of implant degradation should be closely balanced by neo-tissue formation. It is unknown, however, how the implant's functionality is affected by the degradation of the polymers it is composed of. We therefore examined the macro- and microscopic features as well as the mechanical performance of vascular scaffolds upon in vitro enzymatic degradation. Three candidate biomaterials with supramolecularly interacting bis-urea (BU) hard blocks ('slow-degrading' polycarbonate-BU (PC-BU), 'intermediate-degrading' polycarbonate-ester-BU (PC(e)-BU), and 'fast-degrading' polycaprolactone-ester-BU (PCL-BU)) were synthesized and electrospun into microporous scaffolds. These materials possess a sequence-controlled macromolecular structure, so their susceptibility to degradation is tunable by controlling the nature of the polymer backbone. The scaffolds were incubated in lipase and monitored for changes in physical, chemical, and mechanical properties. Remarkably, comparing PC-BU to PC(e)-BU, we observed that small changes in macromolecular structure led to significant differences in degradation kinetics. All three scaffold types degraded via surface erosion, which was accompanied by fiber swelling for PC-BU scaffolds, and some bulk degradation and a collapsing network for PCL-BU scaffolds. For the PC-BU and PC(e)-BU scaffolds this resulted in retention of mechanical properties, whereas for the PCL-BU scaffolds this resulted in stiffening. Our in vitro study demonstrates that vascular scaffolds, electrospun from sequence-controlled supramolecular materials with varying ester contents, not only display different susceptibilities to degradation, but also degrade via different mechanisms. STATEMENT OF SIGNIFICANCE: One of the key elements to successfully engineer vascular tissues in situ, is to balance the rate of implant degradation and neo-tissue formation. Due to their tunable properties, supramolecular polymers can be customized into attractive biomaterials for vascular tissue engineering. Here, we have exploited this tunability and prepared a set of polymers with different susceptibility to degradation. The polymers, which were electrospun into microporous scaffolds, displayed not only different susceptibilities to degradation, but also obeyed different degradation mechanisms. This study illustrates how the class of supramolecular polymers continues to represent a promising group of materials for tissue engineering approaches.

KW - Bulk and surface erosion

KW - Electrospinning

KW - Lipase

KW - Tissue engineering

KW - Vascular graft

UR - http://www.scopus.com/inward/record.url?scp=85065904590&partnerID=8YFLogxK

U2 - 10.1016/j.actbio.2019.05.037

DO - 10.1016/j.actbio.2019.05.037

M3 - Article

C2 - 31108258

VL - 92

SP - 48

EP - 59

JO - Acta Biomaterialia

JF - Acta Biomaterialia

SN - 1742-7061

ER -