The continuous cold start problem in e-commerce recommender systems

L. Bernardi, J. Kamps, Y. Kiseleva, M.J.I. Mueller

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    16 Citaten (Scopus)
    3 Downloads (Pure)

    Samenvatting

    Many e-commerce websites use recommender systems to recommend items to users. When a user or item is new, the system may fail because not enough information is available on this user or item. Various solutions to this `cold-start problem' have been proposed in the literature. However, many real-life e-commerce applications suffer from an aggravated, recurring version of cold-start even for known users or items, since many users visit the website rarely, change their interests over time, or exhibit different personas. This paper exposes the `Continuous Cold Start' (CoCoS) problem and its consequences for content- and context-based recommendation from the viewpoint of typical e-commerce applications, illustrated with examples from a major travel recommendation website, Booking.com. Keywords: Recommender systems, continous cold-start problem, industrial applications
    Originele taal-2Engels
    Titel2nd Workshop on New Trends on Content-Based Recommender Systems (CBRecSys 2015, Vienna, Austria, September 20, 2015; co-located with RecSys 2015)
    RedacteurenT. Bogers, M. Koolen
    UitgeverijCEUR-WS.org
    Pagina's30-33
    StatusGepubliceerd - 2015

    Publicatie series

    NaamCEUR Workshop Proceedings
    Volume1448
    ISSN van geprinte versie1613-0073

    Vingerafdruk

    Duik in de onderzoeksthema's van 'The continuous cold start problem in e-commerce recommender systems'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit