The computational complexity of stochastic optimization

Cassio Polpo de Campos, Georgios Stamoulis, Dennis Weyland

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

This paper presents an investigation on the computational complexity of stochastic optimization problems. We discuss a scenario-based model which captures the important classes of two-stage stochastic combinatorial optimization, two-stage stochastic linear programming, and two-stage stochastic integer linear programming. This model can also be used to handle chance constraints, which are used in many stochastic optimization problems. We derive general upper bounds for the complexity of computational problems related to this model, which hold under very mild conditions. Additionally, we show that these upper bounds are matched for some stochastic combinatorial optimization problems arising in the field of transportation and logistics.

Originele taal-2Engels
TitelCombinatorial Optimization - Third International Symposium, ISCO 2014, Revised Selected Papers
UitgeverijSpringer
Pagina's173-185
Aantal pagina's13
ISBN van geprinte versie9783319091730
DOI's
StatusGepubliceerd - 2014
Extern gepubliceerdJa
Evenement3rd International Symposium on Combinatorial Optimization, ISCO 2014 - Lisbon, Portugal
Duur: 5 mrt. 20147 mrt. 2014

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume8596 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres3rd International Symposium on Combinatorial Optimization, ISCO 2014
Land/RegioPortugal
StadLisbon
Periode5/03/147/03/14

Vingerafdruk

Duik in de onderzoeksthema's van 'The computational complexity of stochastic optimization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit