The compensation approach for walks with small steps in the quarter plane

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaten (Scopus)
5 Downloads (Pure)

Samenvatting

This paper is the first application of the compensation approach (a well-established theory in probability theory) to counting problems. We discuss how this method can be applied to a general class of walks in the quarter plane + 2 with a step set that is a subset of {(-1,1),(-1,0),(0,-1),(1,-1)} in the interior of $Z^2_+$. We derive an explicit expression for the generating function which turns out to be non-holonomic, and which can be used to obtain exact and asymptotic expressions for the counting numbers.
Originele taal-2Engels
Pagina's (van-tot)161-183
TijdschriftCombinatorics, Probability and Computing
Volume22
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 2013

Vingerafdruk

Duik in de onderzoeksthema's van 'The compensation approach for walks with small steps in the quarter plane'. Samen vormen ze een unieke vingerafdruk.

Citeer dit