The compensation approach for walks with small steps in the quarter plane

Onderzoeksoutput: Boek/rapportRapportAcademic

1 Downloads (Pure)

Samenvatting

This paper is the first application of the compensation approach to counting problems. We discuss how this method can be applied to a general class of walks in the quarter plane $Z_{+}^{2}$ with a step set that is a subset of $\{(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1)\}$ in the interior of $Z_{+}^{2}$. We derive an explicit expression for the counting generating function, which turns out to be meromorphic and nonholonomic, can be easily inverted, and can be used to obtain asymptotic expressions for the counting coefficients.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's19
StatusGepubliceerd - 2011

Publicatie series

NaamarXiv.org [math.CO]
Volume1101.0804

Vingerafdruk Duik in de onderzoeksthema's van 'The compensation approach for walks with small steps in the quarter plane'. Samen vormen ze een unieke vingerafdruk.

Citeer dit