The Alcuin number of a graph and its connections to the vertex cover number

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelpeer review

3 Citaten (Scopus)
194 Downloads (Pure)

Samenvatting

We consider a planning problem that generalizes Alcuin's river crossing problem to scenarios with arbitrary conflict graphs. This generalization leads to the so-called Alcuin number of the underlying conflict graph. We derive a variety of combinatorial, structural, algorithmical, and complexity theoretical results around the Alcuin number. Our technical main result is an NP-certificate for the Alcuin number. It turns out that the Alcuin number of a graph is closely related to the size of a minimum vertex cover in the graph, and we unravel several surprising connections between these two graph parameters. We provide hardness results and a fixed parameter tractability result for computing the Alcuin number. Furthermore we demonstrate that the Alcuin number of chordal graphs, bipartite graphs, and planar graphs is substantially easier to analyze than the Alcuin number of general graphs.
Originele taal-2Engels
Pagina's (van-tot)757-769
TijdschriftSIAM Journal on Discrete Mathematics
Volume24
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 2010

Vingerafdruk

Duik in de onderzoeksthema's van 'The Alcuin number of a graph and its connections to the vertex cover number'. Samen vormen ze een unieke vingerafdruk.

Citeer dit