Testing probabilistic models of choice using column generation

B. Smeulders, C. Davis-Stober, M. Regenwetter, F.C.R. Spieksma

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelpeer review

4 Citaten (Scopus)
3 Downloads (Pure)


In so-called random preference models of probabilistic choice, a decision maker chooses according to an unspecified probability distribution over preference states. The most prominent case arises when preference states are linear orders or weak orders of the choice alternatives. The literature has documented that actually evaluating whether decision makers’ observed choices are consistent with such a probabilistic model of choice poses computational difficulties. This severely limits the possible scale of empirical work in behavioral economics and related disciplines. We propose a family of column generation based algorithms for performing such tests. We evaluate our algorithms on various sets of instances. We observe substantial improvements in computation time and conclude that we can efficiently test substantially larger data sets than previously possible.

Originele taal-2Engels
Pagina's (van-tot)32-43
Aantal pagina's12
TijdschriftComputers & Operations Research
StatusGepubliceerd - 1 jul 2018


Duik in de onderzoeksthema's van 'Testing probabilistic models of choice using column generation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit