Temporal logic control of POMDPs via label-based stochastic simulation relations

S. Haesaert, P. Nilsson, C. I. Vasile, R. Thakker, A. Agha-mohammadi, A. D. Ames, R. M. Murray

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

2 Citaties (Scopus)

Uittreksel

The synthesis of controllers guaranteeing linear temporal logic specifications on partially observable Markov decision processes (POMDP) via their belief models causes computational issues due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control policy is synthesized and refined back to the original belief model. We introduce a new notion of label-based approximate stochastic simulation to quantify the deviation between belief models. We develop a robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating for deviations a priori, and that utilizes a less conservative control refinement.

TaalEngels
Pagina's271-276
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume51
Nummer van het tijdschrift16
DOI's
StatusGepubliceerd - 1 jan 2018

Vingerafdruk

Temporal logic
Labels
Specifications
Controllers

Trefwoorden

    Citeer dit

    Haesaert, S., Nilsson, P., Vasile, C. I., Thakker, R., Agha-mohammadi, A., Ames, A. D., & Murray, R. M. (2018). Temporal logic control of POMDPs via label-based stochastic simulation relations. IFAC-PapersOnLine, 51(16), 271-276. DOI: 10.1016/j.ifacol.2018.08.046
    Haesaert, S. ; Nilsson, P. ; Vasile, C. I. ; Thakker, R. ; Agha-mohammadi, A. ; Ames, A. D. ; Murray, R. M./ Temporal logic control of POMDPs via label-based stochastic simulation relations. In: IFAC-PapersOnLine. 2018 ; Vol. 51, Nr. 16. blz. 271-276
    @article{528d3c9e1cbf4e309da171217e9649e6,
    title = "Temporal logic control of POMDPs via label-based stochastic simulation relations",
    abstract = "The synthesis of controllers guaranteeing linear temporal logic specifications on partially observable Markov decision processes (POMDP) via their belief models causes computational issues due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control policy is synthesized and refined back to the original belief model. We introduce a new notion of label-based approximate stochastic simulation to quantify the deviation between belief models. We develop a robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating for deviations a priori, and that utilizes a less conservative control refinement.",
    keywords = "control synthesis, Markov decision processes, partially observable, Temporal properties",
    author = "S. Haesaert and P. Nilsson and Vasile, {C. I.} and R. Thakker and A. Agha-mohammadi and Ames, {A. D.} and Murray, {R. M.}",
    year = "2018",
    month = "1",
    day = "1",
    doi = "10.1016/j.ifacol.2018.08.046",
    language = "English",
    volume = "51",
    pages = "271--276",
    journal = "IFAC-PapersOnLine",
    issn = "2405-8963",
    publisher = "Elsevier",
    number = "16",

    }

    Haesaert, S, Nilsson, P, Vasile, CI, Thakker, R, Agha-mohammadi, A, Ames, AD & Murray, RM 2018, 'Temporal logic control of POMDPs via label-based stochastic simulation relations' IFAC-PapersOnLine, vol. 51, nr. 16, blz. 271-276. DOI: 10.1016/j.ifacol.2018.08.046

    Temporal logic control of POMDPs via label-based stochastic simulation relations. / Haesaert, S.; Nilsson, P.; Vasile, C. I.; Thakker, R.; Agha-mohammadi, A.; Ames, A. D.; Murray, R. M.

    In: IFAC-PapersOnLine, Vol. 51, Nr. 16, 01.01.2018, blz. 271-276.

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    TY - JOUR

    T1 - Temporal logic control of POMDPs via label-based stochastic simulation relations

    AU - Haesaert,S.

    AU - Nilsson,P.

    AU - Vasile,C. I.

    AU - Thakker,R.

    AU - Agha-mohammadi,A.

    AU - Ames,A. D.

    AU - Murray,R. M.

    PY - 2018/1/1

    Y1 - 2018/1/1

    N2 - The synthesis of controllers guaranteeing linear temporal logic specifications on partially observable Markov decision processes (POMDP) via their belief models causes computational issues due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control policy is synthesized and refined back to the original belief model. We introduce a new notion of label-based approximate stochastic simulation to quantify the deviation between belief models. We develop a robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating for deviations a priori, and that utilizes a less conservative control refinement.

    AB - The synthesis of controllers guaranteeing linear temporal logic specifications on partially observable Markov decision processes (POMDP) via their belief models causes computational issues due to the continuous spaces. In this work, we construct a finite-state abstraction on which a control policy is synthesized and refined back to the original belief model. We introduce a new notion of label-based approximate stochastic simulation to quantify the deviation between belief models. We develop a robust synthesis methodology that yields a lower bound on the satisfaction probability, by compensating for deviations a priori, and that utilizes a less conservative control refinement.

    KW - control synthesis

    KW - Markov decision processes

    KW - partially observable

    KW - Temporal properties

    UR - http://www.scopus.com/inward/record.url?scp=85052662704&partnerID=8YFLogxK

    U2 - 10.1016/j.ifacol.2018.08.046

    DO - 10.1016/j.ifacol.2018.08.046

    M3 - Article

    VL - 51

    SP - 271

    EP - 276

    JO - IFAC-PapersOnLine

    T2 - IFAC-PapersOnLine

    JF - IFAC-PapersOnLine

    SN - 2405-8963

    IS - 16

    ER -

    Haesaert S, Nilsson P, Vasile CI, Thakker R, Agha-mohammadi A, Ames AD et al. Temporal logic control of POMDPs via label-based stochastic simulation relations. IFAC-PapersOnLine. 2018 jan 1;51(16):271-276. Beschikbaar vanaf, DOI: 10.1016/j.ifacol.2018.08.046