TeG: Temporal-Granularity Method for Anomaly Detection with Attention in Smart City Surveillance

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Anomaly detection in video surveillance has recently gained interest from the research community. Temporal duration of anomalies vary within video streams, leading to complications in learning the temporal dynamics of specific events. This paper presents a temporal-granularity method for an anomaly detection model (TeG) in real-world surveillance, combining spatio-temporal features at different time-scales. The TeG model employs multi-head cross-attention (MCA) blocks and multi-head self-attention (MSA) blocks for this purpose. Additionally, we extend the UCF-Crime dataset with new anomaly types relevant to Smart City research project. The TeG model is deployed and validated in a city surveillance system, achieving successful real-time results in industrial settings.
Originele taal-2Engels
Titel2024 IEEE International Conference on Visual Communications and Image Processing, VCIP 2024
UitgeverijInstitute of Electrical and Electronics Engineers
Aantal pagina's6
ISBN van elektronische versie979-8-3315-2954-3
DOI's
StatusGepubliceerd - 27 jan. 2025
Evenement 2024 IEEE International Conference on Visual Communications and Image Processing, IEEE VCIP 2024 - Tokyo, Japan
Duur: 8 dec. 202411 dec. 2024

Congres

Congres 2024 IEEE International Conference on Visual Communications and Image Processing, IEEE VCIP 2024
Verkorte titelIEEE VCIP 2024
Land/RegioJapan
StadTokyo
Periode8/12/2411/12/24

Financiering

This work was supported by the European ITEA SMART Mobility project on intelligent traffic flow systems.

Vingerafdruk

Duik in de onderzoeksthema's van 'TeG: Temporal-Granularity Method for Anomaly Detection with Attention in Smart City Surveillance'. Samen vormen ze een unieke vingerafdruk.

Citeer dit