Taming microwave plasma to beat thermodynamics in CO2 dissociation

Gerard van Rooij, D.C.M. van den Bekerom, N.P. (Nicolaas) Harder, den, T. (Teofil) Minea, G. Berden, W.A. Bongers, R.A.H. Engeln, M.F. Graswinckel, E. Zoethout, M.C.M. van de Sanden

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

115 Citaten (Scopus)
6 Downloads (Pure)


The strong non-equilibrium conditions provided by the plasma phase offer the opportunity to beat traditional thermal process energy efficiencies via preferential excitation of molecular vibrations. Simple molecular physics considerations are presented to explain potential dissociation pathways in plasma and their effect on energy efficiency. A common microwave reactor approach is evaluated experimentally with Rayleigh scattering and Fourier transform infrared spectroscopy to assess gas temperatures (exceeding 104 K) and conversion degrees (up to 30%), respectively. The results are interpreted on a basis of estimates of the plasma dynamics obtained with electron energy distribution functions calculated with a Boltzmann solver. It indicates that the intrinsic electron energies are higher than is favorable for preferential vibrational excitation due to dissociative excitation, which causes thermodynamic equilibrium chemistry to dominate. The highest observed energy efficiencies of 45% indicate that non-equilibrium dynamics had been at play. A novel approach involving additives of low ionization potential to tailor the electron energies to the vibrational excitation regime is proposed
Originele taal-2Engels
Pagina's (van-tot)233-248
Aantal pagina's16
TijdschriftFaraday Discussions
StatusGepubliceerd - 1 dec 2015


Duik in de onderzoeksthema's van 'Taming microwave plasma to beat thermodynamics in CO2 dissociation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit