Samenvatting
In this paper we tackle the container allocation problem in multimodal transportation planning under uncertainty in container arrival times, using Deep Reinforcement Learning. The proposed approach can take real-time decisions on allocating individual containers to a truck or to trains, while a transportation plan is being executed. We evaluated our method using data that reflect a realistic scenario, designed on the basis of a case study at a logistics company with three different uncertainty levels based on the probability of delays in container arrivals. The experiments show that Deep Reinforcement Learning methods outperform heuristics, a stochastic programming method, and methods that use periodic re-planning, in terms of total transportation costs at all levels of uncertainty, obtaining an average cost difference with the optimal solution within 0.37% and 0.63%.
Originele taal-2 | Engels |
---|---|
Titel | Computational Logistics - 12th International Conference, ICCL 2021, Proceedings |
Subtitel | 12th International Conference, ICCL 2021, Enschede, The Netherlands, September 27–29, 2021, Proceedings |
Redacteuren | Martijn Mes, Eduardo Lalla-Ruiz, Stefan Voß |
Plaats van productie | Cham |
Uitgeverij | Springer |
Hoofdstuk | 38 |
Pagina's | 578-593 |
Aantal pagina's | 16 |
ISBN van elektronische versie | 978-3-030-87672-2 |
ISBN van geprinte versie | 978-3-030-87671-5 |
DOI's | |
Status | Gepubliceerd - 22 sep. 2021 |
Evenement | 12th International Conference on Computational Logistics, ICCL 2021 - University of Twente, Enschede, Nederland Duur: 27 sep. 2021 → 29 sep. 2021 Congresnummer: 12 https://iccl2021.nl/ |
Publicatie series
Naam | Lecture Notes in Computer Science (LNCS) |
---|---|
Uitgeverij | Springer |
Volume | 13004 |
ISSN van geprinte versie | 0302-9743 |
ISSN van elektronische versie | 1611-3349 |
Congres
Congres | 12th International Conference on Computational Logistics, ICCL 2021 |
---|---|
Land/Regio | Nederland |
Stad | Enschede |
Periode | 27/09/21 → 29/09/21 |
Internet adres |
Financiering
The work leading up to this paper is partly funded by the European Commission under the FENIX project (grant nr. INEA/CEF/TRAN/M2018/1793401).
Financiers | Financiernummer |
---|---|
European Commission | INEA/CEF/TRAN/M2018/1793401 |