TY - JOUR
T1 - Synthesis and characterization of magnetite nano particles with high selectivity using in-situ precipitation method
AU - Rashid, Harith
AU - Mansoor, Muhammad Adil
AU - Haider, Bilal
AU - Nasir, Rizwan
AU - Abd Hamid, Sharifah Bee
AU - Abdulrahman, Aymn
PY - 2020/4/12
Y1 - 2020/4/12
N2 - In-situ precipitation method is widely used and reported in the literature for the synthesis of iron oxide nanoparticles based on their applications in many fields. However, the rate of reaction and rate constant for the production of Magnetite Phase of iron oxide did not study in depth. Reaction rates are required to design a scale-up of the process. In this study, Magnetite phase of iron oxide nanoparticles (Fe 3 O 4 ) are synthesized by the in-situ precipitation method, and the overall reaction rate is evaluated based on the concentration of Magnetite produced during the process. Further, X-ray diffraction, energy-dispersive X-ray spectroscopy and Raman spectroscopy are used to confirm the presence of a higher proportion of magnetite (Fe 3 O 4 ) in the final product, which is responsible for more top magnetic properties 74.615 emu. Changes in morphology of these nanoparticles at different intervals of the reaction are reported by transmission electron microscope. The results showed that spherical nanoparticles synthesized at different intervals of the reaction have a very narrow range of particle size, i.e. 9–15 nm. Detailed analysis reveals the presence of a higher share of maghemite (Fe 2 O 3 ) at the start of the reaction. However, maghemite eventually is converted to magnetite by the end of the reaction, thereby enhancing the magnetic strength of the nanoparticles.
AB - In-situ precipitation method is widely used and reported in the literature for the synthesis of iron oxide nanoparticles based on their applications in many fields. However, the rate of reaction and rate constant for the production of Magnetite Phase of iron oxide did not study in depth. Reaction rates are required to design a scale-up of the process. In this study, Magnetite phase of iron oxide nanoparticles (Fe 3 O 4 ) are synthesized by the in-situ precipitation method, and the overall reaction rate is evaluated based on the concentration of Magnetite produced during the process. Further, X-ray diffraction, energy-dispersive X-ray spectroscopy and Raman spectroscopy are used to confirm the presence of a higher proportion of magnetite (Fe 3 O 4 ) in the final product, which is responsible for more top magnetic properties 74.615 emu. Changes in morphology of these nanoparticles at different intervals of the reaction are reported by transmission electron microscope. The results showed that spherical nanoparticles synthesized at different intervals of the reaction have a very narrow range of particle size, i.e. 9–15 nm. Detailed analysis reveals the presence of a higher share of maghemite (Fe 2 O 3 ) at the start of the reaction. However, maghemite eventually is converted to magnetite by the end of the reaction, thereby enhancing the magnetic strength of the nanoparticles.
KW - agglomeration
KW - break-up
KW - coprecipitation
KW - Magnetite
KW - super para-magnetic
UR - http://www.scopus.com/inward/record.url?scp=85062713173&partnerID=8YFLogxK
U2 - 10.1080/01496395.2019.1585876
DO - 10.1080/01496395.2019.1585876
M3 - Article
AN - SCOPUS:85062713173
SN - 0149-6395
VL - 55
SP - 1207
EP - 1215
JO - Separation Science and Technology
JF - Separation Science and Technology
IS - 6
ER -