Symplectic geometries, transvection groups, and modules

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

25 Citaten (Scopus)
2 Downloads (Pure)

Samenvatting

We show that any connected partial linear space in which there is a line with at least four points and that has the property that any pair of intersecting lines is contained in a subspace isomorphic to a symplectic plane is isomorphic to the geometry of hyperbolic lines in some symplectic geometry. As a corollary to this result we obtain a characterization of the subgroups of the symplectic groups that are generated by transvection subgroups. Also a characterization of the natural modules for these groups is obtained.
Originele taal-2Engels
Pagina's (van-tot)39-59
Aantal pagina's21
TijdschriftJournal of Combinatorial Theory, Series A
Volume65
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 1994

Vingerafdruk

Duik in de onderzoeksthema's van 'Symplectic geometries, transvection groups, and modules'. Samen vormen ze een unieke vingerafdruk.

Citeer dit