Switching Kalman Filtering-Based Corrosion Detection and Prognostics for Offshore Wind-Turbine Structures

Robert Brijder (Corresponding author), Stijn Helsen, Agusmian Partogi Ompusunggu

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
20 Downloads (Pure)

Samenvatting

Since manual inspections of offshore wind turbines are costly, there is a need for remote monitoring of their health condition, including health prognostics. In this paper, we focus on corrosion detection and corrosion prognosis since corrosion is a major failure mode of offshore wind turbine structures. In particular, we propose an algorithm for corrosion detection and three algorithms for corrosion prognosis by using Bayesian filtering approaches, and quantitatively compare their accuracy against synthetic datasets having characteristics typical for wall thickness measurements using ultrasound sensors. We found that a corrosion prognosis algorithm based on the Pourbaix corrosion model using unscented Kalman filtering outperforms the algorithms based on a linear corrosion model and the bimodal corrosion model introduced by Melchers.
Originele taal-2Engels
Pagina's (van-tot)1-13
Aantal pagina's13
TijdschriftWind
Volume3
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - mrt. 2023

Financiering

This work was carried out in the framework of the WATEREYE project that has received funding from the European Union\u2019s Horizon 2020 research and innovation programme under grant agreement No 851207.

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme851207
European Union’s Horizon Europe research and innovation programme

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Switching Kalman Filtering-Based Corrosion Detection and Prognostics for Offshore Wind-Turbine Structures'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit