TY - JOUR
T1 - Supramolecular modification of a sequence-controlled collagen-mimicking polymer
AU - Spaans, Sergio
AU - Fransen, Peter Paul K.H.
AU - Schotman, Maaike J.G.
AU - van der Wulp, Ruben
AU - Lafleur, René P.M.
AU - Kluijtmans, Sebastiaan G.J.M.
AU - Dankers, Patricia Y.W.
PY - 2019/6/10
Y1 - 2019/6/10
N2 - Structurally and functionally well-defined recombinant proteins are an interesting class of sequence-controlled macromolecules to which different crosslinking chemistries can be applied to tune their biological properties. Herein, we take advantage of a 571-residue recombinant peptide based on human collagen type I (RCPhC1), which we functionalized with supramolecular 4-fold hydrogen bonding ureido-pyrimidinone (UPy) moieties. By grafting supramolecular UPy moieties onto the backbone of RCPhC1 (UPy-RCPhC1), increased control over the polymer structure, assembly, gelation, and mechanical properties was achieved. In addition, by increasing the degree of UPy functionalization on RCPhC1, cardiomyocyte progenitor cells were cultured on "soft" (?26 kPa) versus "stiff" (?68-190 kPa) UPy-RCPhC1 hydrogels. Interestingly, increased stress fiber formation, focal adhesions, and proliferation were observed on stiffer compared to softer substrates, owing to the formation of stronger cell-material interactions. In conclusion, a bioinspired hydrogel material was designed by a combination of two well-known natural components, i.e., a protein as sequence-controlled polymer and UPy units inspired on nucleobases.
AB - Structurally and functionally well-defined recombinant proteins are an interesting class of sequence-controlled macromolecules to which different crosslinking chemistries can be applied to tune their biological properties. Herein, we take advantage of a 571-residue recombinant peptide based on human collagen type I (RCPhC1), which we functionalized with supramolecular 4-fold hydrogen bonding ureido-pyrimidinone (UPy) moieties. By grafting supramolecular UPy moieties onto the backbone of RCPhC1 (UPy-RCPhC1), increased control over the polymer structure, assembly, gelation, and mechanical properties was achieved. In addition, by increasing the degree of UPy functionalization on RCPhC1, cardiomyocyte progenitor cells were cultured on "soft" (?26 kPa) versus "stiff" (?68-190 kPa) UPy-RCPhC1 hydrogels. Interestingly, increased stress fiber formation, focal adhesions, and proliferation were observed on stiffer compared to softer substrates, owing to the formation of stronger cell-material interactions. In conclusion, a bioinspired hydrogel material was designed by a combination of two well-known natural components, i.e., a protein as sequence-controlled polymer and UPy units inspired on nucleobases.
UR - http://www.scopus.com/inward/record.url?scp=85066468700&partnerID=8YFLogxK
U2 - 10.1021/acs.biomac.9b00353
DO - 10.1021/acs.biomac.9b00353
M3 - Article
C2 - 31050892
AN - SCOPUS:85066468700
SN - 1525-7797
VL - 20
SP - 2360
EP - 2371
JO - Biomacromolecules
JF - Biomacromolecules
IS - 6
ER -