Sulfonated foam catalysts for the continuous dehydration of xylose to furfural in biphasic media

Vladan Krzelj, Dulce Perez Ferrandez, M. Fernanda Neira D'Angelo (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

This paper demonstrates the use of sulfonated foam structures, acting both as catalyst and liquid-liquid contactor, during the continuous dehydration of xylose to furfural in biphasic media. First, we develop and optimize a coating procedure comprising a two-step polymerization technique (polypropylene and polystyrene-divinylbenzene), followed by swelling and sulfonation. The method was highly reproducible and led to a stable, well-adhered, 12–50 μm layer of sulfonic resin with an ion exchange capacity of 0.1 meq/cmfoam3. The catalytic foams showed the same activity than H2SO4 in terms of conversion and selectivity versus residence time and temperature. The enhanced mass transfer properties of the foam-based reactor facilitated rapid furfural extraction, thus allowing for higher temperature operations (ca. 20–50 °C higher) and shorter residence times (ca. 10 min vs. 4–5 h) than conventionally reported in the literature, while preserving high furfural selectivity (ca. 70–80%). Finally, the stability of the sulfonated foam catalyst during operation was demonstrated up to 170 °C, although higher temperatures led to a visible decay in activity. We conclude that the sulfonated foams show great potential for this application.

Originele taal-2Engels
Pagina's (van-tot)274-281
TijdschriftCatalysis Today
Volume365
Vroegere onlinedatum31 dec 2020
DOI's
StatusGepubliceerd - 1 apr 2021

Vingerafdruk Duik in de onderzoeksthema's van 'Sulfonated foam catalysts for the continuous dehydration of xylose to furfural in biphasic media'. Samen vormen ze een unieke vingerafdruk.

Citeer dit