Subspace codes from Ferrers diagrams

Elisa Gorla, Alberto Ravagnani

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

19 Citaten (Scopus)

Samenvatting

In this paper, we survey the main known constructions of Ferrers diagram rank-metric codes, and establish new results on a related conjecture by Etzion and Silberstein. We also give a sharp lower bound on the dimension of linear rank-metric anticodes with a given profile. Combining our results with the multilevel construction, we produce examples of subspace codes with the largest known cardinality for the given parameters. We also apply results from algebraic geometry to the study of the analogous problem over an algebraically closed field, proving that the bound by Etzion and Silberstein can be improved in this case, and providing a sharp bound for full-rank matrices.

Originele taal-2Engels
Artikelnummer1750131
TijdschriftJournal of Algebra and its Applications
Volume16
Nummer van het tijdschrift7
DOI's
StatusGepubliceerd - 1 jul. 2017

Vingerafdruk

Duik in de onderzoeksthema's van 'Subspace codes from Ferrers diagrams'. Samen vormen ze een unieke vingerafdruk.

Citeer dit