Study of moment-based MPC formulations and their connection to classical control

Rongkai Zhang, M.B. Saltik, L. Özkan

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

Model predictive control (MPC) is a well-established modern control technology used in diverse applications to provide (sub)optimal operating conditions while incorporating safety and performance constraints. In MPC, the control action at the current time instant is obtained by solving a finite horizon optimal control problem according to the forecasts of the future process behavior. Hence the quality/validity of predictions generated from process models determine the performance of these controllers ([1]). Although models based on first principles are expected to provide better predictions for a wider range of operating conditions ([2]), the model predictions should also incorporate the effects of uncertain deviations to overcome the adverse effects. To this end, robust model predictive control techniques are developed in order to reduce the effect of uncertainty ([3,4]) in dynamical processes.
Originele taal-2Engels
TitelComputing and Systems Technology Division 2017 - Core Programming Area at the 2017 AIChE Annual Meeting
UitgeverijAmerican Institute of Chemical Engineers (AIChE)
Pagina's388-390
Aantal pagina's3
ISBN van elektronische versie978-1-5108-5799-5
StatusGepubliceerd - 1 jan 2017
EvenementComputing and Systems Technology Division 2017 - Core Programming Area at the 2017 AIChE Annual Meeting - Minneapolis, Verenigde Staten van Amerika
Duur: 29 okt 20173 nov 2017

Congres

CongresComputing and Systems Technology Division 2017 - Core Programming Area at the 2017 AIChE Annual Meeting
LandVerenigde Staten van Amerika
StadMinneapolis
Periode29/10/173/11/17

Vingerafdruk Duik in de onderzoeksthema's van 'Study of moment-based MPC formulations and their connection to classical control'. Samen vormen ze een unieke vingerafdruk.

Citeer dit