Studies in frequent tree mining

J. Knijf, De

    Onderzoeksoutput: ScriptieDissertatie 4 (Onderzoek NIET TU/e / Promotie NIET TU/e)

    Samenvatting

    Employing Data mining techniques for structured data is particularly challenging, because it is commonly assumed that the structure of the data encodes part of its semantics. As a result are classical data mining techniques insufficient to analyze and mine these data. In this thesis we develop several mining algorithms for tree structured data and discuss some applications. Moreover, we focus on algorithms that only retrieve a small subset of all potentially interesting patterns, while the overall quality of the retrieved subset is as good as the complete set of patterns. The results show beside a smaller set of more focused patterns, that the proposed algorithms are far more efficient over existing algorithms.
    Originele taal-2Engels
    KwalificatieDoctor in de Filosofie
    Toekennende instantie
    • Utrecht University
    Begeleider(s)/adviseur
    • Siebes, Arno P.J.M., Promotor, Externe Persoon
    • Feelders, Ad J., Co-Promotor, Externe Persoon
    Datum van toekenning19 nov. 2008
    Plaats van publicatieUtrecht
    Uitgever
    Gedrukte ISBN's978-90-393-4950-2
    StatusGepubliceerd - 2008

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Studies in frequent tree mining'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit