Structure-preserving neural networks for the n-body problem

Philipp Horn, Veronica Saz Ulibarrena, Barry Koren, Simon Portegies Zwart

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

In order to understand when it is useful to build physics constraints into neural net- works, we investigate different neural network topologies to solve the N-body problem. Solving the chaotic N-body problem with high accuracy is a challenging task, requiring special numerical integrators that are able to approximate the trajectories with extreme precision. In [1] it is shown that a neural network can be a viable alternative, offering solutions many orders of magnitude faster. Specialized neural network topologies for applications in scientific computing are still rare compared to specialized neural networks for more classical machine learning applications. However, the number of specialized neural networks for Hamiltonian systems has been growing significantly during the last years [3, 5]. We analyze the performance of SympNets introduced in [5], preserving the symplectic structure of the phase space flow map, for the prediction of trajectories in N -body systems. In particular, we compare the accuracy of SympNets against standard multilayer perceptrons, both inside and outside the range of training data. We analyze our findings using a novel view on the topology of SympNets. Additionally, we also compare SympNets against classical symplectic numerical integrators. While the benefits of symplectic integrators for Hamiltonian systems are well understood, this is not the case for SympNets.

Originele taal-2Engels
Titel8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Congress 2022
DOI's
StatusGepubliceerd - 2022
Evenement8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2022 - Oslo, Noorwegen
Duur: 5 jun. 20229 jun. 2022
Congresnummer: 8
https://www.eccomas2022.org/frontal/Introduction.asp

Congres

Congres8th European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS 2022
Verkorte titelECCOMAS 2022
Land/RegioNoorwegen
StadOslo
Periode5/06/229/06/22
Internet adres

Bibliografische nota

Publisher Copyright:
© 2022, Scipedia S.L. All rights reserved.

Vingerafdruk

Duik in de onderzoeksthema's van 'Structure-preserving neural networks for the n-body problem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit