Strong IP formulations need large coefficients

Christopher Hojny (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)

Samenvatting

The development of practically well-behaved integer programming formulations is an important aspect of solving linear optimization problems over a set X⊆{0,1} n. In practice, one is often interested in strong integer formulations with additional properties, e.g., bounded coefficients to avoid numerical instabilities. This article presents a lower bound on the size of coefficients in any strong integer formulation of X and demonstrates that certain integer sets X require (exponentially) large coefficients in any strong integer formulation. We also show that strong integer formulations of X⊆{0,1} n may require exponentially many inequalities while linearly many inequalities may suffice in weak formulations.

Originele taal-2Engels
Artikelnummer100624
Aantal pagina's24
TijdschriftDiscrete Optimization
Volume39
DOI's
StatusGepubliceerd - feb. 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'Strong IP formulations need large coefficients'. Samen vormen ze een unieke vingerafdruk.

Citeer dit