TY - JOUR
T1 - Stochastic integer programming for multi-disciplinary outpatient clinic planning
AU - Leeftink, A.G.
AU - Vliegen, I.M.H.
AU - Hans, E.W.
PY - 2019/3/15
Y1 - 2019/3/15
N2 - Scheduling appointments in a multi-disciplinary clinic is complex, since coordination between disciplines is required. The design of a blueprint schedule for a multi-disciplinary clinic with open access requirements requires an integrated optimization approach, in which all appointment schedules are jointly optimized. As this currently is an open question in the literature, our research is the first to address this problem. This research is motivated by a Dutch hospital, which uses a multi-disciplinary cancer clinic to communicate the diagnosis and to explain the treatment plan to their patients. Furthermore, also regular patients are seen by the clinicians. All involved clinicians therefore require a blueprint schedule, in which multiple patient types can be scheduled. We design these blueprint schedules by optimizing the patient waiting time, clinician idle time, and clinician overtime. As scheduling decisions at multiple time intervals are involved, and patient routing is stochastic, we model this system as a stochastic integer program. The stochastic integer program is adapted for and solved with a sample average approximation approach. Numerical experiments evaluate the performance of the sample average approximation approach. We test the suitability of the approach for the hospital’s problem at hand, compare our results with the current hospital schedules, and present the associated savings. Using this approach, robust blueprint schedules can be found for a multi-disciplinary clinic of the Dutch hospital.
AB - Scheduling appointments in a multi-disciplinary clinic is complex, since coordination between disciplines is required. The design of a blueprint schedule for a multi-disciplinary clinic with open access requirements requires an integrated optimization approach, in which all appointment schedules are jointly optimized. As this currently is an open question in the literature, our research is the first to address this problem. This research is motivated by a Dutch hospital, which uses a multi-disciplinary cancer clinic to communicate the diagnosis and to explain the treatment plan to their patients. Furthermore, also regular patients are seen by the clinicians. All involved clinicians therefore require a blueprint schedule, in which multiple patient types can be scheduled. We design these blueprint schedules by optimizing the patient waiting time, clinician idle time, and clinician overtime. As scheduling decisions at multiple time intervals are involved, and patient routing is stochastic, we model this system as a stochastic integer program. The stochastic integer program is adapted for and solved with a sample average approximation approach. Numerical experiments evaluate the performance of the sample average approximation approach. We test the suitability of the approach for the hospital’s problem at hand, compare our results with the current hospital schedules, and present the associated savings. Using this approach, robust blueprint schedules can be found for a multi-disciplinary clinic of the Dutch hospital.
KW - Appointment scheduling
KW - Multi-disciplinary planning
KW - Sample average approximation
KW - Stochastic processes
KW - Humans
KW - Ambulatory Care Facilities/organization & administration
KW - Models, Statistical
KW - Patient Care Team/organization & administration
KW - Netherlands
KW - Algorithms
KW - Neoplasms/therapy
KW - Stochastic Processes
KW - Appointments and Schedules
KW - Personnel Staffing and Scheduling/organization & administration
UR - http://www.scopus.com/inward/record.url?scp=85033471680&partnerID=8YFLogxK
U2 - 10.1007/s10729-017-9422-6
DO - 10.1007/s10729-017-9422-6
M3 - Article
C2 - 29124483
AN - SCOPUS:85033471680
SN - 1386-9620
VL - 22
SP - 53
EP - 67
JO - Health Care Management Science
JF - Health Care Management Science
IS - 1
ER -