Stencils with isotropic discretization error for differential operators

M. Patra, M.E.J. Karttunen

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    58 Citaten (Scopus)

    Samenvatting

    We derive stencils, i.e., difference schemes, for differential operators for which the discretization error becomes isotropic in the lowest order. We treat the Laplacian, Bilaplacian (= biharmonic operator), and the gradient of the Laplacian both in two and three dimensions. For three dimensions [MATHEMATICAL SCRIPT CAPITAL O](h2) results are given while for two dimensions both [MATHEMATICAL SCRIPT CAPITAL O](h2) and [MATHEMATICAL SCRIPT CAPITAL O](h4) results are presented. The results are also available in electronic form as a Mathematica file. It is shown that the extra computational cost of an isotropic stencil usually is less than 20%. Keywords: difference schemes;Laplacian;isotropic discretization
    Originele taal-2Engels
    Pagina's (van-tot)936-953
    TijdschriftNumerical Methods for Partial Differential Equations
    Volume22
    Nummer van het tijdschrift4
    DOI's
    StatusGepubliceerd - 2006

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Stencils with isotropic discretization error for differential operators'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit