Status and prospects of plasma-assisted atomic layer deposition

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Citaties (Scopus)
138 Downloads (Pure)

Uittreksel

Processing at the atomic scale is becoming increasingly critical for state-of-the-art electronic devices for computing and data storage, but also for emerging technologies such as related to the internet-of-things, artificial intelligence, and quantum computing. To this end, strong interest in improving nanoscale fabrication techniques such as atomic layer deposition (ALD) has been present. New ALD processes are being sought continuously and particularly plasma-assisted processes are considered an enabler for a wide range of applications because of their enhanced reactivity. This review provides an update on the status and prospects of plasma-assisted ALD with a focus on the developments since the publication of the review by Profijt et al. [J. Vac. Sci. Technol. A 29, 050801 (2011)]. In the past few years, plasma ALD has obtained a prominent position in the field of ALD with (i) a strong application base as demonstrated by the breakthrough in high-volume manufacturing; (ii) a large number of established processes, out of which several are being enabled by the plasma step; and (iii) a wide range of plasma ALD reactor designs, demonstrating many methods by which plasma species can be applied in ALD processes. In addition, new fundamental insights have been obtained, for instance, with respect to plasma damage, on the effect of ions on the material properties and on the so-called redeposition effect. Regarding new and emerging developments, plasma ALD is expected to take a prominent position in the atomic-scale processing toolbox and will contribute to ongoing developments in area-selective deposition, controlled growth of 2D materials, and atomic layer etching.
Originele taal-2Engels
Artikelnummer030902
Aantal pagina's26
TijdschriftJournal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films
Volume37
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 1 mei 2019

Vingerafdruk

Atomic layer deposition
atomic layer epitaxy
Plasmas
Plasma deposition
emerging
reactor design
artificial intelligence
quantum computation
data storage
Processing
Artificial intelligence
Etching
Materials properties
manufacturing
reactivity
etching
Ions
damage
Data storage equipment
Fabrication

Citeer dit

@article{9b93d7e7a0d84924af34331f63694fee,
title = "Status and prospects of plasma-assisted atomic layer deposition",
abstract = "Processing at the atomic scale is becoming increasingly critical for state-of-the-art electronic devices for computing and data storage, but also for emerging technologies such as related to the internet-of-things, artificial intelligence, and quantum computing. To this end, strong interest in improving nanoscale fabrication techniques such as atomic layer deposition (ALD) has been present. New ALD processes are being sought continuously and particularly plasma-assisted processes are considered an enabler for a wide range of applications because of their enhanced reactivity. This review provides an update on the status and prospects of plasma-assisted ALD with a focus on the developments since the publication of the review by Profijt et al. [J. Vac. Sci. Technol. A 29, 050801 (2011)]. In the past few years, plasma ALD has obtained a prominent position in the field of ALD with (i) a strong application base as demonstrated by the breakthrough in high-volume manufacturing; (ii) a large number of established processes, out of which several are being enabled by the plasma step; and (iii) a wide range of plasma ALD reactor designs, demonstrating many methods by which plasma species can be applied in ALD processes. In addition, new fundamental insights have been obtained, for instance, with respect to plasma damage, on the effect of ions on the material properties and on the so-called redeposition effect. Regarding new and emerging developments, plasma ALD is expected to take a prominent position in the atomic-scale processing toolbox and will contribute to ongoing developments in area-selective deposition, controlled growth of 2D materials, and atomic layer etching.",
author = "Harm Knoops and Tahsin Faraz and Karsten Arts and Erwin Kessels",
year = "2019",
month = "5",
day = "1",
doi = "10.1116/1.5088582",
language = "English",
volume = "37",
journal = "Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films",
issn = "0734-2101",
publisher = "AVS Science and Technology Society",
number = "3",

}

TY - JOUR

T1 - Status and prospects of plasma-assisted atomic layer deposition

AU - Knoops, Harm

AU - Faraz, Tahsin

AU - Arts, Karsten

AU - Kessels, Erwin

PY - 2019/5/1

Y1 - 2019/5/1

N2 - Processing at the atomic scale is becoming increasingly critical for state-of-the-art electronic devices for computing and data storage, but also for emerging technologies such as related to the internet-of-things, artificial intelligence, and quantum computing. To this end, strong interest in improving nanoscale fabrication techniques such as atomic layer deposition (ALD) has been present. New ALD processes are being sought continuously and particularly plasma-assisted processes are considered an enabler for a wide range of applications because of their enhanced reactivity. This review provides an update on the status and prospects of plasma-assisted ALD with a focus on the developments since the publication of the review by Profijt et al. [J. Vac. Sci. Technol. A 29, 050801 (2011)]. In the past few years, plasma ALD has obtained a prominent position in the field of ALD with (i) a strong application base as demonstrated by the breakthrough in high-volume manufacturing; (ii) a large number of established processes, out of which several are being enabled by the plasma step; and (iii) a wide range of plasma ALD reactor designs, demonstrating many methods by which plasma species can be applied in ALD processes. In addition, new fundamental insights have been obtained, for instance, with respect to plasma damage, on the effect of ions on the material properties and on the so-called redeposition effect. Regarding new and emerging developments, plasma ALD is expected to take a prominent position in the atomic-scale processing toolbox and will contribute to ongoing developments in area-selective deposition, controlled growth of 2D materials, and atomic layer etching.

AB - Processing at the atomic scale is becoming increasingly critical for state-of-the-art electronic devices for computing and data storage, but also for emerging technologies such as related to the internet-of-things, artificial intelligence, and quantum computing. To this end, strong interest in improving nanoscale fabrication techniques such as atomic layer deposition (ALD) has been present. New ALD processes are being sought continuously and particularly plasma-assisted processes are considered an enabler for a wide range of applications because of their enhanced reactivity. This review provides an update on the status and prospects of plasma-assisted ALD with a focus on the developments since the publication of the review by Profijt et al. [J. Vac. Sci. Technol. A 29, 050801 (2011)]. In the past few years, plasma ALD has obtained a prominent position in the field of ALD with (i) a strong application base as demonstrated by the breakthrough in high-volume manufacturing; (ii) a large number of established processes, out of which several are being enabled by the plasma step; and (iii) a wide range of plasma ALD reactor designs, demonstrating many methods by which plasma species can be applied in ALD processes. In addition, new fundamental insights have been obtained, for instance, with respect to plasma damage, on the effect of ions on the material properties and on the so-called redeposition effect. Regarding new and emerging developments, plasma ALD is expected to take a prominent position in the atomic-scale processing toolbox and will contribute to ongoing developments in area-selective deposition, controlled growth of 2D materials, and atomic layer etching.

UR - http://www.scopus.com/inward/record.url?scp=85063235638&partnerID=8YFLogxK

U2 - 10.1116/1.5088582

DO - 10.1116/1.5088582

M3 - Article

VL - 37

JO - Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films

JF - Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films

SN - 0734-2101

IS - 3

M1 - 030902

ER -