Statistical inference for intelligent lighting : a pilot study

A. Kota Gopalakrishna, T. Özçelebi, A. Liotta, J.J. Lukkien

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

4 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

The decision process in the design and implementation of intelligent lighting applications benefits from insights about the data collected and a deep understanding of the relations among its variables. Data analysis using machine learning allows discovery of knowledge for predictive purposes. In this paper, we analyze a dataset collected on a pilot intelligent lighting application (the breakout dataset) using a supervised machine learning based approach. The performance of the learning algorithms is evaluated using two metrics: Classification Accuracy (CA) and Relevance Score (RS). We find that the breakout dataset has a predominant one-tomany relationship, i.e. a given input may have more than one possible output and that RS is an appropriate metric as opposed to the commonly used CA.
Originele taal-2Engels
TitelIntelligent Distributed Computing VIII, 3-5 September 2014, Madrid, Spain
RedacteurenD. Camacho, L. Braubach, S. Venticinque, C. Badica
Plaats van productieCham
UitgeverijSpringer
Pagina's9-18
ISBN van geprinte versie978-3-319-10422-5
DOI's
StatusGepubliceerd - 2015

Publicatie series

NaamStudies in Computational Intelligence
Volume570
ISSN van geprinte versie1860-949X

Vingerafdruk

Duik in de onderzoeksthema's van 'Statistical inference for intelligent lighting : a pilot study'. Samen vormen ze een unieke vingerafdruk.

Citeer dit