State Derivative Normalization for Continuous-Time Deep Neural Networks

Jonas Weigand, Gerben I. Beintema, Jonas Ulmen, Daniel Görges, Roland Tóth, Maarten Schoukens, Martin Ruskowski

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

13 Downloads (Pure)

Samenvatting

The importance of proper data normalization for deep neural networks is well known. However, in continuous-time state-space model estimation, it has been observed that improper normalization of either the hidden state or hidden state derivative of the model estimate, or even of the time interval can lead to numerical and optimization challenges with deep learning based methods. This results in a reduced model quality. In this contribution, we show that these three normalization tasks are inherently coupled. Due to the existence of this coupling, we propose a solution to all three normalization challenges by introducing a normalization constant at the state derivative level. We show that the appropriate choice of the normalization constant is related to the dynamics of the to-be-identified system and we derive multiple methods of obtaining an effective normalization constant. We compare and discuss all the normalization strategies on a benchmark problem based on experimental data from a cascaded tanks system and compare our results with other methods of the identification literature.

Originele taal-2Engels
Pagina's (van-tot)253-258
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume58
Nummer van het tijdschrift15
DOI's
StatusGepubliceerd - 1 jul. 2024
Evenement20th IFAC Symposium on System Identification, SYSID 2024 - Boston, Verenigde Staten van Amerika
Duur: 17 jul. 202419 jul. 2024
Congresnummer: 20

Bibliografische nota

Publisher Copyright:
© 2024 The Authors.

Financiering

The project RACKET supported this research under grant 01IW20009 by the German Federal Ministry of Education and Research.

FinanciersFinanciernummer
Bundesministerium für Bildung und Forschung

    Vingerafdruk

    Duik in de onderzoeksthema's van 'State Derivative Normalization for Continuous-Time Deep Neural Networks'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit