Stabilized immersed isogeometric analysis for the Navier–Stokes–Cahn–Hilliard equations, with applications to binary-fluid flow through porous media

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)
74 Downloads (Pure)

Samenvatting

Binary-fluid flows can be modeled using the Navier–Stokes–Cahn–Hilliard equations, which represent the boundary between the fluid constituents by a diffuse interface. The diffuse-interface model allows for complex geometries and topological changes of the binary-fluid interface. In this work, we propose an immersed isogeometric analysis framework to solve the Navier–Stokes–Cahn–Hilliard equations on domains with geometrically complex external binary-fluid boundaries. The use of optimal-regularity B-splines results in a computationally efficient higher-order method. The key features of the proposed framework are a generalized Navier-slip boundary condition for the tangential velocity components, Nitsche's method for the convective impermeability boundary condition, and skeleton- and ghost-penalties to guarantee stability. A binary-fluid Taylor–Couette flow is considered for benchmarking. Porous medium simulations demonstrate the ability of the immersed isogeometric analysis framework to model complex binary-fluid flow phenomena such as break-up and coalescence in complex geometries.

Originele taal-2Engels
Artikelnummer116483
Aantal pagina's30
TijdschriftComputer Methods in Applied Mechanics and Engineering
Volume417
Nummer van het tijdschriftPart B.
DOI's
StatusGepubliceerd - 15 dec. 2023

Vingerafdruk

Duik in de onderzoeksthema's van 'Stabilized immersed isogeometric analysis for the Navier–Stokes–Cahn–Hilliard equations, with applications to binary-fluid flow through porous media'. Samen vormen ze een unieke vingerafdruk.

Citeer dit