Stabilization of capacitated matching games

Matthew Gerstbrein, Laura Sanità, Lucy Verberk (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

An edge-weighted, vertex-capacitated graph G is called stable if the value of a maximum-weight capacity-matching equals the value of a maximum-weight fractional capacity-matching. Stable graphs play a key role in characterizing the existence of stable solutions for popular combinatorial games that involve the structure of matchings in graphs, such as network bargaining games and cooperative matching games. The vertex-stabilizer problem asks to compute a minimum number of players to block (i.e., vertices of G to remove) in order to ensure stability for such games. The problem has been shown to be solvable in polynomial-time, for unit-capacity graphs. This stays true also if we impose the restriction that the set of players to block must not intersect with a given specified maximum matching of G. In this work, we investigate these algorithmic problems in the more general setting of arbitrary capacities. We show that the vertex-stabilizer problem with the additional restriction of avoiding a given maximum matching remains polynomial-time solvable. Differently, without this restriction, the vertex-stabilizer problem becomes NP-hard and even hard to approximate, in contrast to the unit-capacity case.

Originele taal-2Engels
Pagina's (van-tot)313-334
Aantal pagina's22
TijdschriftMathematical Programming
Volume210
Nummer van het tijdschrift1-2
Vroegere onlinedatum29 nov. 2024
DOI's
StatusGepubliceerd - mrt. 2025

Bibliografische nota

Publisher Copyright:
© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2024.

Financiering

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk OnderzoekVI.Vidi.193.087

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Stabilization of capacitated matching games'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit