SSD-ML: hierarchical object classification for traffic surveillance

Matthijs Zwemer, R.G.J. Wijnhoven, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)
620 Downloads (Pure)

Samenvatting

We propose a novel CNN detection system with hierarchical classification for traffic object surveillance. The detector is based on the Single-Shot multibox Detector (SSD) and inspired by the hierarchical classification used in the YOLO9000 detector. We separate localization and classification during training, by introducing a novel loss term that handles hierarchical classification. This allows combining multiple datasets at different levels of detail with respect to the label definitions and improves localization performance with non-overlapping labels. We experiment with this novel traffic object detector and combine the public UADETRAC, MIO-TCD datasets and our newly introduced surveillance dataset with non-overlapping class definitions. The proposed SSD-ML detector obtains 96:4% mAP in localization performance, outperforming default SSD with 5:9%. For this improvement, we additionally introduce a specific hard-negative mining method. The effect of incrementally adding more datasets reveals that the best performance is obtained when training with all datasets combined (we use a separate test set). By adding hierarchical classification, the average classification performance increases with 1:4% to 78:6% mAP. This positive result is based on combining all datasets, although label inconsistencies occur in the additional training data. In addition, the final system can recognize the novel ‘van’ class that is not present in the original training data.
Originele taal-2Engels
Titel15th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP2020)
RedacteurenGiovanni Maria Farinella, Petia Radeva, Jose Braz
UitgeverijSciTePress Digital Library
Pagina's250-259
Aantal pagina's10
ISBN van elektronische versie9789897584022
StatusGepubliceerd - 27 feb. 2020
Evenement15th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP2020) - Valetta, Malta
Duur: 27 feb. 202029 feb. 2020
http://www.insticc.org

Congres

Congres15th International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP2020)
Verkorte titelVISAPP 2020
Land/RegioMalta
StadValetta
Periode27/02/2029/02/20
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'SSD-ML: hierarchical object classification for traffic surveillance'. Samen vormen ze een unieke vingerafdruk.
  • Hierarchical Object Detection and Classification Using SSD Multi-Loss

    Zwemer, M. H., Wijnhoven, R. G. J. & de With, P. H. N., 1 jan. 2022, Computer Vision, Imaging and Computer Graphics Theory and Applications - 15th International Joint Conference, VISIGRAPP 2020, Revised Selected Papers: 15th International Joint Conference, VISIGRAPP 2020 Valletta, Malta, February 27–29, 2020, Revised Selected Papers. Bouatouch, K., de Sousa, A. A., Chessa, M., Paljic, A., Kerren, A., Hurter, C., Farinella, G. M., Radeva, P. & Braz, J. (uitgave). Cham: Springer, blz. 268-296 29 blz. (Communications in Computer and Information Science (CCIS); vol. 1474).

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    1 Citaat (Scopus)

Citeer dit