Samenvatting
Dynamic Vision Sensors (DVS) offer unique advantages, such as high temporal resolution and low power consumption, making them ideal for low-latency, energy-efficient applications. Current techniques frequently underutilize their capabilities because they depend on conventional frame-based deep neural networks, which sacrifice temporal detail and demand high computational resources. In this work, we propose SpikeVision, a Transformer-inspired Spiking Neural Network (SNN) model with a fully event-based encoding and processing strategy tailored for DVS input streams. SpikeVision integrates attention-inspired mechanisms adapted for spiking computations, enabling efficient spatial feature extraction without relying on matrix multiplications while leveraging stateful neurons for temporal event processing. We demonstrate that SpikeVision achieves state-of-the-art classification accuracy (99.3%) on the DVS128 Gesture benchmark while maintaining low energy consumption in Field-Programmable Gate Array (FPGA) implementations, highlighting its potential for real-time, edge-based vision tasks.
Originele taal-2 | Engels |
---|---|
Titel | 2024 58th Asilomar Conference on Signals, Systems, and Computers |
Redacteuren | Michael B. Matthews |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 1537-1541 |
Aantal pagina's | 5 |
ISBN van elektronische versie | 979-8-3503-5405-8 |
DOI's | |
Status | Gepubliceerd - 4 apr. 2025 |
Evenement | The Asilomar Conference on Signals, Systems, and Computers - Asilomar, Pacific Grove, Verenigde Staten van Amerika Duur: 27 okt. 2024 → 30 okt. 2024 https://www.asilomarsscconf.org/ |
Congres
Congres | The Asilomar Conference on Signals, Systems, and Computers |
---|---|
Verkorte titel | ACSSC 2024 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Pacific Grove |
Periode | 27/10/24 → 30/10/24 |
Internet adres |
Financiering
This work was supported by the Dutch Research Council (NWO) IMAGINE project, Grant ID: 17911, KICH1.ST04.22.033.
Financiers | Financiernummer |
---|---|
Nederlandse Organisatie voor Wetenschappelijk Onderzoek | KICH1.ST04.22.033, 17911 |