SpikeVision: A Fully Spiking Neural Network Transformer-Inspired Model for Dynamic Vision Sensors

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

174 Downloads (Pure)

Samenvatting

Dynamic Vision Sensors (DVS) offer unique advantages, such as high temporal resolution and low power consumption, making them ideal for low-latency, energy-efficient applications. Current techniques frequently underutilize their capabilities because they depend on conventional frame-based deep neural networks, which sacrifice temporal detail and demand high computational resources. In this work, we propose SpikeVision, a Transformer-inspired Spiking Neural Network (SNN) model with a fully event-based encoding and processing strategy tailored for DVS input streams. SpikeVision integrates attention-inspired mechanisms adapted for spiking computations, enabling efficient spatial feature extraction without relying on matrix multiplications while leveraging stateful neurons for temporal event processing. We demonstrate that SpikeVision achieves state-of-the-art classification accuracy (99.3%) on the DVS128 Gesture benchmark while maintaining low energy consumption in Field-Programmable Gate Array (FPGA) implementations, highlighting its potential for real-time, edge-based vision tasks.
Originele taal-2Engels
Titel2024 58th Asilomar Conference on Signals, Systems, and Computers
RedacteurenMichael B. Matthews
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1537-1541
Aantal pagina's5
ISBN van elektronische versie979-8-3503-5405-8
DOI's
StatusGepubliceerd - 4 apr. 2025
EvenementThe Asilomar Conference on Signals, Systems, and Computers - Asilomar, Pacific Grove, Verenigde Staten van Amerika
Duur: 27 okt. 202430 okt. 2024
https://www.asilomarsscconf.org/

Congres

CongresThe Asilomar Conference on Signals, Systems, and Computers
Verkorte titelACSSC 2024
Land/RegioVerenigde Staten van Amerika
StadPacific Grove
Periode27/10/2430/10/24
Internet adres

Financiering

This work was supported by the Dutch Research Council (NWO) IMAGINE project, Grant ID: 17911, KICH1.ST04.22.033.

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk OnderzoekKICH1.ST04.22.033, 17911

    Vingerafdruk

    Duik in de onderzoeksthema's van 'SpikeVision: A Fully Spiking Neural Network Transformer-Inspired Model for Dynamic Vision Sensors'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit